Jet Stream Meandering in the Northern Hemisphere Winter: An Advection–Diffusion Perspective

Published in Journal of Climate, 2022

Recommended citation: Chen, Gang, Yu Nie and Yang Zhang, 2022: Jet Stream Meandering in the Northern Hemisphere Winter: An Advection–Diffusion Perspective, Journal of Climate, 35, 2055--2073, doi:10.1175/JCLI-D-21-0411.1.

Large meridional excursions of a jet stream are conducive to blocking and related midlatitude weather extremes, yet the physical mechanism of jet meandering is not well understood. This paper examines the mechanisms of jet meandering in boreal winter through the lens of a potential vorticity (PV)-like tracer advected by reanalysis winds in an advection–diffusion model. As the geometric structure of the tracer displays a compact relationship with PV in observations and permits a linear mapping from tracer to PV at each latitude, jet meandering can be understood by the geometric structure of tracer field that is only a function of prescribed advecting velocities. This one-way dependence of tracer field on advecting velocities provides a new modeling framework to quantify the effects of time mean flow versus transient eddies on the spatiotemporal variability of jet meandering. It is shown that the mapped tracer wave activity resembles the observed spatial pattern and magnitude of PV wave activity for the winter climatology, interannual variability, and blocking-like wave events. The anomalous increase in tracer wave activity for the composite over interannual variability or blocking-like wave events is attributed to weakened composite mean winds, indicating that the low-frequency winds are the leading factor for the overall distributions of wave activity. It is also found that the tracer model underestimates extreme wave activity, likely due to the lack of feedback mechanisms. The implications for the mechanisms of jet meandering in a changing climate are also discussed.

Download paper: journal website